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Recently a method has been developed by Jen to enumerate limit cycles in 
cellular automata (CA) with periodic boundary conditions. This involves opera- 
tions on a connectivity matrix whose elements are related to the invariance of 
a site in a particular neighborhood to application of the CA rule. We extend this 
method to the case of fixed boundary conditions, of interest in simulations. In 
this case, translational invariance is lost, and the enumeration procedure is 
much more tedious than with periodic boundary conditions. We show examples 
for a fixed-point, a period-two, and a period-three enumeration in considerable 
detail, and give results--in agreement with simulations--for the number of fixed 
points and period-two cycles in selected two-state, nearest-neighbor CA rules. 

KEY WORDS: Elementary cellular automata; connectivity matrix; fixed 
boundary conditions. 

1. I N T R O D U C T I O N  

Cellular automata (CA) (16) are models discrete in space, time, and state 
variable, and therefore seem naturally suited for computer simulation. At 
the same time as efforts are being made to simulate and analyze physically 
meaningful models, there have been a few rigorous studies (79) of the 
long-time properties of simpler CA rules, especially of the determination of 
the number of limit cycles of a prescribed length. 

In the present paper we extend the scope of these studies from the 
usual case of periodic boundary conditions to the case of fixed boundary 
conditions. The motivation is threefold: (1) Simulation in complex 
geometries with little or no increase in computation time has proved to be 
one of the strong points of CA; we should mention in particular simula- 
tions of fluid flow through porous media (1~ which require fixed bound- 
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aries. (2) Recent studies of CA with fixed boundaries have shown a wealth 
of previously unobserved and physically interesting behavior, such as 
global (t2'13) and bistable (14~ phase-space structures. (3)Fixed boundary 
conditions appear  to play an important  role in the critical behavior of 
some sandpile models. (~5) The only studies of fixed boundary conditions in 
CA of which we are aware are an interesting but rather ad hoc analysis of 
CA rule 232 by Kerszberg and Mukamel  (~6) and a group-theoretic study of 
rule 150 with zero boundary conditions by Pitsianis and co-workers. (t7) 
What  we report here is a more general method, valid for arbitrary CA 
rules. 

This paper  will proceed as follows: in Section 2 we review Jen's (9) con- 
nectivity matrix formalism, which we extend to the case of fixed boundary 
conditions; we also present explicit calculations for a fixed-point, a 
period-two, and a period-three enumeration. In Section 3 we present a 
summary of results for short cycles in two-state nearest-neighbor rules, and 
we conclude with a discussion in Section 4. Appendices A and B provide 
details of the enumeration of period-3 cycles for rule 43, and of recursion 
relations for small cycles in elementary CA rules, respectively. 

2. METHOD AND EXAMPLES 

Consider a one-dimensional cellular au tomaton rule of radius r and k 
states per site, defined thus: 

t + ~ =  f ( x ~ _  x ~ x '  ~" 7 ~ + 1  X i  . . . . . .  i . . . . .  i + r J ,  f: ~ k  ~ Z k  (1) 

where x~ e Zk is the value at the ith site at time t. The index i runs from 
1 to L. The fixed boundary conditions are defined by the values of x l_  �9 to 
Xo and xL + ~ to xL + r. 

The connectivity matrix, as defined in ref. 9, is calculated as follows. 
Consider all k 2r possible states of 2r sites, and label each of these states 
thus: 

i = { i l ,  i2,.-. ,  i2r}, im e Z k, m = 1 ..... 2r (2) 

So, i labels the state as a whole, and the set of quantities {ira: m = 1 to 2r} 
gives the values of sites that compose the state i. The connectivity matrix 
A [13 is defined thus: 

A~ 11 = 1 iff 

(a) i 2 = Jl ,  i3 = J 2 , ' " ,  i2r = J2r t and 

(b) i~+ 1 = f ( i a ,  i 2 ..... i2~, J2r) 

A~.~3 = 0 otherwise 
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So, a nonzero element of A ElI corresponds to a sequence of (2r + 1) sites, 
where the central site is invariant under the action of the rule. Taking 
powers of A EI~ then extends this sequence in space, and, as shown by 
Jen, (9) the value of (A E12)} gives the number of sequences of length (2r + n), 
beginning with i and ending with j, where the central n elements are 
unchanged under the action of the rule. The number of states invariant 
under one application of the rule (fixed points) for the case of periodic 
boundary conditions, and system size L, is the value of the trace of (A E~l)c. 
However, we are interested in the case of fixed boundaries. In a similar 
manner, the number of fixed points for a one-dimensional cellular 
automaton with fixed boundaries and length L is given by 

T~ 12 = Z  (A~I~)~ (3) 
i,j 

where 

ir rn+l =Xl m and Jar 1-mmXL+m for m = l t o r  

This is a rather more complicated expression than in the periodic case. The 
lack of translational invariance, plus the additional degrees of freedom 
allowed by the choice of boundary conditions, give us a general sum over 
elements of the matrix rather than a simple trace. However, in many cases, 
it is still possible to obtain an analytic result provided that k 2r is not too 
large. For the simplest case (k = 2, r = 1) we have solutions for the number 
of fixed points for all boundary conditions, all rules, and all lattice sizes. 
(The results for a selection of rules, for which we also have solutions for the 
numbers of period-two cycles, are given in Appendix B.) 

To extend the method to cycles of arbitrary period, we have to con- 
sider the pth  composition of the rule (which gives a compound rule of 
radius pr). It is clear that the evolution of all sites over p time steps can be 
described by such rules. However, the evolution of sites within a distance 
pr of either boundary will not be described by the same compound rule as 
that which describes the evolution of sites distant from the boundary, since 
some of the sites within the radius of the compound rule are, by virtue 
of being part of the boundary, fixed. This requires the introduction of 
additional, position-dependent, connectivity matrices. 

Consider the evolution over p time steps of a system of width 
L > 2 ( p r -  1). For sites within a distance pr of the boundaries we label the 
compound rules thus: 

x ~ + ' =  li['l(x~_pr,..., x~ ..... x~+pr); i =  1 ..... ( p r -  1) (4) 

and 

x,+p = rfPl(XtL+ r ' ,+pr); i =  1,..., (pr--  1) L + l - - i  1 i --pr '""  X L + l - - r ' " "  X L + I - -  
(5) 
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Although the evolution does not depend on the boundary values {xi: i <  
( 1 - p r )  or i >  (L +pr)},  for ease of calculation we will include these sites 
and fix their values to be zero. 

For the remaining sites, we have the bulk pth  composition of the 
original rule: 

'+P= aEPl( Xl_pr,..., x~,..., x~ + p,) (6) X i 
We now have ( 2 p r -  1) rules of radius pr. For each rule we construct a 
connectivity matrix as before. (a Epl ~ A Epl, lie p~ -~ L~ p2 and r~ pl ~ REiP2.) 
We then define the following quantity: 

m,nI(pr-lL[i p] ) EP]) L 2pr+2( pr-1 Ep] i T~LP]:2L\ i~I .  (A \i~IiRpr_)]mn (7) 

This rather more complicated expression is a generalization of Eq. (3) to 
include the position-dependent connectivity matrices. It gives the number 
of sequences of length (2pr + L) beginning with m and ending with n, where 
the central L elements are unchanged after applying the original rule p 
times. As before, the values of m and n must be taken to match the required 
boundary conditions. Although the values of { x ~ : i < ( 1 - p r )  or i >  
(L +pr)} do not affect the evolution, they do restrict the allowed values of 
m and n and prevent overcounting. 

As examples of the application of this technique, we will now calculate 
the number of fixed points and period-two limit cycles for the two-state 
nearest-neighbor rule 37 in Wolfram's nomenclature, <3) and the number of 
period-three cycles for rule 43. 

2.1. Rule 37: Fixed Points 

This rule is defined as follows: 

f (101,010,000)= 1 

f (001,100,011,110,111)=0 
(8) 

Note that the rule is invariant under the interchange of left and right. From 
Eq. (2) we label the possible values of central and peripheral states as 
follows: 

i=0 :  i1=0,  i 2 - 0  

i =  1: i I - - - -0 ,  i 2 =  1 

i = 2: il = 1, i 2 = 0 

i = 3: i 1 = 1, i 2 = 1 

(9) 
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Directly from the definition, the nonzero elements of A Ell are 

(i, j) = (0,1), (1,2), (2,0) (10) 

Inserting the explicit form of A Ell into the equation 

(A EI~). +~ = A E1J(A Cl])" (1 i ) 

yields the following recursion relations: 

Ag +l =A~ 

A7 +1 =Ag (12) 

A~ +1 =A~ 

where A 7 denotes the ith row of (AE1J) ". The solution for an arbitrary 
power of A E~ can then be written thus: 

A3n A3n+l 3n+2 0 - - ~ ' 2  = A 1  = (1, 0, 0, 0 )  

A3"--A3n+I ~3"+2= (0,1, 0, 0) (13) 
1 - -  " ~ 0  ~ -  ~ 2  

A3n A 3 n + l  A3n+2 (0, 0, 1, 0) 
2 ~ 1  ~ 0  

where (-..) denotes the elements of a row. The numbers of fixed points 
for given fixed boundary conditions is then calculated by taking the 
appropriate sum over elements as detailed in Eq. (3). The results for all 
fixed boundary conditions (plus the periodic case for comparison) and all 
values of L are given in Table I. 

Note that the results for (01) and (10) boundary conditions are identi- 
cal, as they must be for a left-right symmetric rule. These values agree with 
computational results (12) which have been performed up to L = 14. 

Table I. Numbers of Fixed Points for Rule 37, 
As a Function of Lattice Size L, for All Fixed 

Plus Periodic Boundary Conditions 

Xo XL+I L=3n L = 3 n + l  L = 3 n + 2  

0 0 1 1 2 
0 1 1 1 0 
1 0 1 1 0 
1 1 0 0 1 

Periodic 3 0 0 
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2.2. Rule 37: Period t w o  Limit Cycles 

L [23 and R ~21 are calculated by considering all possible sets of values 
for five sites. All elements corresponding to x_  1 = 1 or x r  + 2 = 1 are set to 
zero to avoid overcounting. Since the rule is symmetric, the non-zero 
elements of R [2] follow directly from those of L E21. Thus: 

f:(80000, 00010, 00101)= 0 

f2(60001, 66100, 66011, 60110, 66111) = 1 
(14) 

f:(OiO01, 61100, 61011, 6 i l  10, OiOlO, 61111)= 0 

fz(61000, Ol l01 )=  1 

where O or 1 indicates a boundary (constant) bit. We label the possible 
values of four bits thus: 

i =  O: 0000 

i =  1: 0001 

�9 ( 1 5 )  

i = 15: 1111 

By direct application of the rule, the nonzero elements of L E23 and R r21 
are: 

L~2]: 

(i, j )  = (0, 0), (1, 2), (2, 4), (3, 6), 

(3, 7), (4, 9), (5, 10), (5, 11) and (6, 13) 
R~21: (16) 

(i, j)  = (0, 0), (2, 4), (4, 8), (5, 10), 

(6, 12), (9, 2), (11, 6), (13, 10), (14, 12) 

The expression for the number of invariant states then reduces to 

T[L p] = E (A[2]) L-2  (17) 

where: i. j 

I f x  o=0 ,  i = 0 , 2 , 4 ,  6, or 7. 
If Xo= 1, i = 9 ,  10, 11, or 13. 
IfXL+I=O,j=O, 2, 4, 6, or 14. 
I f x L + l =  1, j = 5 ,  9, 11, or 13. 
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By applying the rule to all possible initial states composed of five bits, the 
nonzero elements of A [2] are 

(i, j ) =  (0, 0), (0, 1), (1, 3), (2, 4), 

(3, 6), (3, 7), (4, 9), (5, 10), 

(5, 11), (6, 12), (7, 14), (7, 15), 

(8, 0), (9, 2), (12, 8), (13, 10), 

(14, 12), (15, 14), (15, 15) 

If we denote the ith row of (A[2])" by AT, then for n~>6, we have the 
following set of recursion relations: 

n n A ~ = A ~ - I + A ~  1 A ~ = 0  A10=AH 

n n n - -  n - - 3  A n  A n - - 2  
A I = A  1 1 + A~)-5 A 6 - A  o ~.12 = - - o  

A g = A  4 i a "  A n + l  n _ _  n- " ' 7=~1  A13_ 0 

A~=A7 +1 A ~ = A ;  -~  A"14 =-A~ 

A ~ = A 4 - 3 A '~ = A "4 - 2 A "~ 5 =- A '~ 

This yields the solution: 

A3" = (0, 0, 0, 0, 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )  

A43" + 1= (0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ,0 ,0 ,0 ,0 ,0 ,0 )  

A3"+2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (18) 

Ag= (z .+3,z .+2,  0, z .+ l ,  0, 0, z., z . , y .+2 ,  0, 0, 0, y.+3,  O,y.+3,Y.+3) 

A n l = ( y . + z , y . + l , 0 ,  y . , O , O , y , , _ l , y . _ l , Z , ~  z , O , O , O , z . , O , z , . z n )  

where 

Z n  = Z n -  l "~  Y n -  2 
(19) 

Y. = Y.-  1 + z. 4 

The initial values of z. and y .  are calculated by performing the multiplica- 
tion explicitly for the lowest powers of the matrix. The results are given in 
Table II. 

The number of states which lie in period-two limit cycles is obtained 
by subtracting the number of fixed points (states which are clearly also 
invariant under two applications of the rule). This gives the following 
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Table II. The  In i t i a l  V a l u e s  o f  z n and y .  as Defined in E q u a t i o n  18 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
z~ 0 0 1 1 1 1 1 1 2 4 7 11 16 22 
y~ 1 0 0 0 0 0 1 2 3 4 5 6 8 12 

solution for the number of period-two Cycles as a function of L, for 
X o : O  , X L + I  = 0 :  

ZL 2+YL--2+YL+I+�89 5+ZL--I+ZL+1] (20) 

and also for the periodic case: 

ZL+3+2yL+I (21) 

both of which agree with computational results. There are no period-two 
cycles for the other possible fixed boundary conditions. 

2.3. Rule 43: Period-Three Limit Cycles 

Rule 43 is defined thus: 

f (101,011,001,000)  = 1 

f (010,100,110,111)  = 0  
(22) 

and is hence invariant under conjugation (all l's change to O's and vice 
versa). This means that we need only calculate the results for XL+I = 0 and 
x o = 0 or 1. For  the case of fixed points and period-two limit cycles, the 
calculation proceeds as before. We find that in the case of fixed boundaries, 
for L >~ 4, there are no fixed points or period-two limit cycles. In the peri- 
odic case, there are no fixed points for any L, and either one or two 
period-two limit cycles, for odd or even values of L, respectively. We now 
proceed to the enumeration of the period-three limit cycles. Since this 
involves five 64 x 64 matrices, we will not give all the details here (see 
Appendix A). 

From Eq. (7) the number of states invariant under three iterations of 
the rule can be written thus: 

TL [3] = 2  ['(A[3])L 41~ (23) 
i , j  
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where the suffixes label all sets of possible values for six sites: 

i =  0: 000000 

i =  1: 000001 

i=64 :  111111 

393 

(24) 

and the allowed values of i and j are deduced from the m a t r i c e s  L~  3], L 2  E33, 

R f  3], and R2 [3] a s  defined in Eqs. (4) and (5). 
The matrix A [3] has 80 nonzero elements. Solving for (Af3]) n 

row-by-row, and using A 7 to denote the ith row, we have the following key 
recursion relations: 

n n--3 
A 4 = A  4 

A•3 =-A'~3 - 3  

A~ = A73 -k- A73 ~ + A73 2 (25) 

+ A~+A~ I+A] 2+A'~ 6 

=_C+A~ -6 

Table III. The Numbers of Period Three Cycles 
for Rule 43 as a Function of System Size L 

Xo xL + 1 L 

L L - 1  
0 0 ~ or 2 

L L + I  
0 1 ~ or 2 

L L + I  
1 0 ~- or 2 

L L - 1  
l 1 ~- or 2 

Periodic If L = 6m : 4 
If L = 3 ( 2 m +  1) :2  
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where n ~> 10 and C denotes a constant row. At sufficiently large n, all other 
rows can be expressed in terms of these three. The results for the numbers 
of period-three cycles, for all boundary conditions, as a function of the 
system size L are given in Table III. 

3. S U M M A R Y  OF RESULTS 

In Appendix B we tabulate the results obtained for the numbers of 
period-one and period-two cycles for a selection of rules. We include the 
results for all fixed boundaries, plus the periodic case for comparison. We 
see that in many cases, the result in the periodic case can be expressed in 
terms of the same quantities used to express the results for fixed bound- 
aries, and is not bounded in any way by the exact values in the fixed case. 
This is not surprising, since the series obtained to express these results have 
their origins in the recursion relations which describe the relations between 
the rows of the connectivity matrix raised to various powers. We also note 
here that all the results for a given rule will obey the recursion relation 
which can be derived from the characteristic equation of ALP]. (9) For the 
case of fixed points, for r = 1, this is a feasible approach: the characteristic 
equation will yield a recursion relation which contains at most four terms. 
However, for the case of period-two cycles, the same approach will yield a 
relation containing up to 15 terms. For  the rules listed, we found that the 
relations obtained contained fewer terms than this, and could be extracted 
from the elements of AE2] with only moderate effort. Although the rules 
dealt with in the main text both possess symmetries, this is not a necessary 
requirement. As the period of the required cycles increases, the algebraic 
manipulation required to obtain analytic results becomes increasingly 
cumbersome due to the size of the matrices. However, it is still possible to 
obtain numerical results on a computer. 

Negative Results 

It is clear from the results shown in Appendix B that fixed boundaries 
can affect greatly the long-time properties of a CA rule. Since the connec- 
tivity matrix is unchanged by the boundary conditions, the difference with 
periodic boundary conditions must arise either from the left right bound- 
ary connectivity matrices (L and R in this paper) or from summing over 
specific matrix elements [-see Eq. (7)] other than the trace. 

Elementary CA rules provide a dramatic example of this: Jen has 
proved ~8) that with periodic boundary conditions any rule must have at 
least one fixed point or period-two cycle for any lattice size. Her proof can 
be recast in terms of the properties of the trace of the connectivity matrix. 
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With fixed boundary conditions there are a number of combinations of 
rules and boundaries which, for large enough lattice size, have nei ther  fixed 
points nor period-two cycles. 

These rules are as follows: 

Rule: (XoXL + l) 

2: (01), (11) 
10: (01), (11) 
11: (00), (01), (10), (11) 
24: (10), (11) 
25: (00), (01) 
26: (01), (11) 
27: (00), (01) 
33: (01), (10) 
35: (lO) 
38: (01), (11) 
41: (01), (10), (11) 
42: (01), ( l l )  
43: (00), (01), (10), (11) 
46: (01), (11) 
54: (01), (10) 
56: (11) 
57: (00), (01), (11) 
58: (01), (11) 
60: (10), (11) 
62: (01), (10), (11) 

106: (01) 
122: (01), (10) 
130: (01) 
152: (10) 

We choose as a first example rules 2, 10, 38, and 46, since the powers of 
the connectivity matrix (AE2~)" are identical for n > 4 .  The nonzero 
elements of this matrix are (i, j )  = (0, 0), (4, 0), (8.0), (12, 0) = 1 for any 
n >4.  In the periodic boundary case, the number of states belonging in 
cycles no longer than two is Tr(A E21),= 1. For the case of fixed boundaries 
with x L + l =  1, Eq. (7) reduces to a sum over elements (AE21)~., with j 
taking only odd values. Independently of the R and L matrices, the sum 
over odd j readily gives no fixed points or period-two cycles for lattice sizes 
n > 4, in agreement with simulations. 
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Similarly, rule 11 has the following nonzero elements in the third or 
higher powers of the A E2~ connectivity matrix: 

(i, j)  = (0, 0), (0, 1), (0, 2), (0, 3), 

(15,12),(15,13),(15,14),(15,15) 

Since the L matrix only has nonzero elements in columns 2, 4, 5, 8, 9, 10, 
and 11, Eq. (7) yields no fixed points or period-two limit cycles for any  

combination of fixed boundaries. 
For the remaining rules which do not appear in Appendix B, similar 

arguments apply. For rules 27, 60, 62, and 130, (AE2~) n evolves to a fixed 
form. For rules 42, 56, 57, and 58, it alternates between two fixed matrices, 
depending on the value of n modulo 2. For rule 152, it evolves to a fixed 
form, except for a few terms which are of order n. Rule 35 leads to a matrix 
with fixed, order n and alternating terms. For the last rule, 106, the matrix 
takes on one of four fixed values, depending on the value of n modulo 4. 
Despite this variation in behavior, it is simple to verify the absence of both 
fixed points and period-two cycles for all the above rules: neither the 
changing elements nor the nonzero constant elements contribute to the 
relevant sums. 

4. D I S C U S S I O N  

In the present paper we have extended the connectivity matrix tech- 
nique for enumerating limit cycles in cellular automata (CA) to include the 
case of fixed boundary conditions, which is what is often done in simula- 
tions of physical interest. Jen's original technique (9) only dealt explicitly 
with limit cycles in cylindrical CA, i.e., one-dimensional with periodic 
boundary conditions. 

With fixed boundary conditions the translational invariance of the 
system is lost. It is then necessary (1)to introduce additional, position- 
dependent matrices for the sites nearest to the boundary for limit cycles 
longer than one, and (2) to sum over particular elements of the powers of 
the connectivity matrix rather than to just take traces. We have shown 
explicit examples of how the recursion relations are obtained for limit 
cycles of length one, two, and three in Section 2. The calculation of these 
is much more tedious than in the cylindrical case. 

We have also included in Section 3 a summary of results for small 
cycles (length one or two) for a few interesting elementary CA (two states, 
nearest neighbor) rules. As a striking example of the effects of translational 
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invariance, we provide a list of rules which exhibit no cycles of length 
less than three for large enough lattices; this cannot occur with periodic 
boundary conditions. 

A P P E N D I X  A 

We give here the details of the analysis of period-three cycles for rule 
43. As in Eq. (23), the number of states invariant under three iterations of 
the rule is 

Tc [33 = ~  [(AE33)L-4]/y 
i , j  

where the indices take the following values: 

If x0=O, then i = 0 ,  1, 2, 3, 4, 6, 7, 13, 16, 17, 18, 19, 22, 23, 24, 25, 
27, 28, 29, 30, or 31. 

If x o = 1, then i =  32, 33, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 50, 
56, 57, 59, 60, 61, 62, or 63. 

If x L + l = 0 ,  then j = 4 ,  6, 8, 10, 12, 16, 18, 20, 24, 26, 28, 34, 36, 40, 
42, 44, 48, 50, 52, 56, or 58. 

All elements of A E31 are zero, except for those whose row and column 
are given in Table IV, and which take the value one. This leads to the 
following set of relations for individual rows of (AE31) ", for n sufficiently 
large, using the same notation as in the text: 

n _ _  3 n n n n 1 n - -  1 
A4--A~4 As=A13 A 6 = A  4 +AI3 

A ~=A]  +1 A'~o=A"4 1 A'~,=AT~ -1 

A,~3=A733 ATy=A,  4 2+Ag 3 + A 7 3 3 + A  ~ 2 

A 7 = C + A 7  -6 

n - -  n A I 2 - A  4 
n n + 2  A l s = A 4  

Table IV. 

(4,8) (4,9) (5,11) (6,12) (6, 13) (7,14) (7,15) (9,18) 
(10, 20) (11,22) (11,23) (12,24) (12, 25) (13,27) (14, 28) (14,29) 
(15,30) (15,31) (16,32)  (16,33)  (17,34) (17,35) (18, 36) (19, 38) 
(19,39) (20,40) (20,41)  (21,43)  (22,45) (25,50) (26, 52) (27, 54) 
(27,55) (28,56) (28,57) (29, 59) (30,60) (30,61)  (31,62) (31,63) 
(32,0) (32, 1) (33, 2) (33,3) (34,4) (35,6) (35, 7) (36,8) 
(36,9) (37,11) (38,13) (41,18) (42,20)  (43,22)  (43,23) (44,24) 
(44,25) (45,27) (46,28) (46,29)  (47,30)  (47,31)  (48,32) (48,33) 
(49,34) (49,35) (50,36) (51,38) (51,39)  (52,40) (52,41) (53,43) 
(54,45) (56,48) (56,49) (57,50) (57, 51) (58,52) (59,54) (59, 55) 
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A19 =A'~3 2 A~o=A ~ 
n A~5=A]+I A26 =A,  ~ 1 

A~9 = A73 A~4 = A] 1 
n __ /1 n __ ;7 

A 3 6  = A 4  A37 =As 
A22 . . . . .  = A l o  A 4 3  = A l l  

_ n 
A~6-= A~4 A~47= A15 

_ n 

Ag o = A78 A~I = A 19 

An54==__A~2 1~6 = A'~7 1 

A~9 =- A~7 

A~I =A'~3 A'~2= A~[ 2 

n A'~7 = AT[ t Aa8 = A,~ + 2 _ A~3 

n n - - 2  n - -  A35=A4 +An132+A7 1 

A '~ 8 = A13 1 A ~41- A '~ 
n ~ n n _ _  n 

A 4 4  = A 12 A45 = A 13 

= A 16  A , ] 9  _ _  n A ~8 -- " = A iv 

= A2o A~3 --= A~I A~2 - ,, 

A~ 7__A4 2+A73 A~ 8__=A~ 6 

Rows which do not appear in the above either zero initially, or evolve to 
zero after a few multiplications. All that remains is to detail the required 
initial conditions thus: 

A~= [8 ,9]  

A ] =  [18] 

A]= [36] 

AI3 = [27] 

A~3= [54,553 

A~3= [45] 

C= [8,9,18,27,36,45,54,55] 

A~= [14,15] 

2 [28,29,30,31]  A7= 

3 [56,57,59,60,61,62,63]  A T =  

A~= [48,49,50,51,54,55]  

s [32,33,34,35,36,38,39,45]  A7= 

A~= [0, 1,2,3,4,6,7,8,9, 13,27] 

A~ = [8, 9, 12, 13, 14, 15, 18, 27, 54, 55] 

A~= [18,24,25,27,28,29,30,31,36,45,54,55]  

A~= [8 ,9 ,27 ,36 ,45 ,50 ,54 ,55 ,56 ,57 ,59 ,60 ,61 ,62 ,63]  

(26) 
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Table V. 

3 9 9  

(Xo xL + ~) Fixed points Period-2 cycles Comments  

# 6  
(00) � 8 9  0 A = � 8 9  L] 
(01) fL 1 - f r  and for the rest 
(10) �89 + 1 + f L ]  0 of the table 
(11) 1 - f L  f z  

Periodic 1 + 2fz 0 

# 7  
(00) 1 �89 -- 1 +SL]  - -  
(01) f z  �89  1 - - f L ]  
(10) 1 � 8 9  1 - f L ]  
(1I)  1 - f L  �89  1 + f L ]  

Periodic 2fL 1 

#18  

(00) 1 aL_ 2 a.  = an_ 2 + a . _  3 
(01) 0 aL-  1 a 1 = 0, a2 = 1, a3 = 1 
(10) 0 aL-1 

(11) 0 a L 
Periodic 1 b L bn=  b .  4+2bn 5 + b n _  6 

ba ..... b6=0 ,  0, 0, 2, 5, 3 
# 2 3  
(00) 1 - - f z  cz 2 
(01) fL eL 2 
(10) fL cL 2 
(11) 1 - - fL  cL 2 

Periodic 2fL dL 

# 2 9  

(00) 1 �89 ~ 2 + eL - 1 ] 
(01) 2 eL .  ~ -- 1 

(10) A �89 2 + eL+l - - fL ]  
(11) 1 �89 l -  1] 

Periodic 2 f t  gL + 2 + gL + h L + 1 -- f L  

# 3 0  

(00) 2 - - fL fL 
(01) l 1 -- fL 
(10) fL 1 - - fL 
(11) 1 f t  

Periodic 1 + 2fL 0 

# 3 3  
(00) 0 1 "~[kL+3--kL+2+kL~l 

k L - k L  l + k z  z] 
(Ol) o o 

(lo) o o 
(11) o 

Periodic 0 2kL.  1 -- kL + fL 

Cn~Cn_l +Cn_ 2 
C1=1, C2=2 

dn = 2dn_ 1 - dn_2 + tin_4 
d l = l ,  d 2 = l ,  d B = l , & = 3  

e,, =- g .  + h,, 

g,, = g , , - i  + gn-3  + h,,_3 
h . = h . _ l  +g,,  2+h , ,_2  

g2 = 1, g3 = 1, g4 = 1 
h2=O, h3=O 

k .  = 2k,, _ I - k,, _ 2 + k . _  4 
k 1 = k  2 = k  3 = k 4 =  1 

822/66/1-2-26 
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Table V. (Continued) 

(XoXz +1) Fixed points Period-2 cycles Comments 

#41 
(00) 0 1 - - fL  
(Ol) o o 
(lO) o o 
(11) 0 0 

Periodic 0 4aor -}- alr -- 2a2r + a3r 

#45 
(00) 1 + a2r 0 
(01) l + a l r  1 -61r  
(10) 1-62r 0 
(11) 1 --31r air 

Periodic 3aor 1 

#54  
(00) 1 0 
{Ol) o o 
(10) 0 0 
(11) 0 2 

Periodic 1 26or 

#110 
(00) 3 � 89  fL] 
(01) 0 f r  
(10) 2 �89  1 + f L ]  
(11) 0 1 - - fL  

Periodic 1 2a0r 

# 122 
(00) 1 l 
(01) 0 0 
(10) 0 0 
(11) 0 mL+l +mL +2+mL + 4 

Periodic 1 f r  + 2 m L .  3 + mL-- 2 + m L-  3 

# 126 
(00) 1 PL+2+PL+PL 1 
(01) 0 PL+3 +PL+I +PL 
(10) 0 PL+3 +PL+I +PL 
(11) 0 PL+4 +PL+2 + P r + l  

Periodic 1 2PL+ 1 + 3PL 

# 146 
(00) 1 P L +I+P r  a+PL--2 
(01) 0 PL--I+PL 3 +PL--4 
(10) 0 Pr a +PL-3 +PL-4 
(11) 1 P r - 3 + P L  5 +PL-6 

Periodic 2 2PL + l + 3PL 

L = 4 m + r  
r = 0 ,  1, 2, or 3 

L = 3 m + r  
r = 0 ,  1, or2  

L = 4 m + r  
r = 0 ,  1, 2, or 3 

L = 4 m + r  
r = 0 ,  1,2, or 3 

mn = mn 4 + 2 m n -  5 + mn 6 

ml,..., m6 = 0, 0, 1, 0, 0, 0 

p~=p~ 4+2p~ 5+P,~-6 
pp..., p6=O, O, O, O, 1, 1 
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where [ . . . ]  denotes a row of 64 elements, with the only nonzero elements 
(l's) in the positions indicated. (Elements are labeled from 0 to 63.) This 
now gives a complete solution for (AE31)" for all n ~> 10. For n ~< 9, we can 
perform the multiplication explicitly. 

APPENDIX  B 

Table V contains the results for the numbers of fixed points and 
period-two cycles for a selection of elementary CA rules. Note that the 
numbers of period-two cycles do no t  include the fixed points, and that 
results do not necessarily apply to the smallest lattice sizes. 
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